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A theoretical model is reported that describes wave propagation between three floating
Euler–Bernoulli thin elastic sheets extending, respectively, from −∞ to 0, from 0 to l,
and from l to ∞, with properties, e.g. thickness, that can be specified independently.
The sheets are assumed either to be welded together or to have free edges separating
them. Two methods of solution are employed – the Wiener–Hopf technique and
residue calculus, which allows the theoretical development to be verified at various
points along the way. The model generalizes the considerable body of published work
concerned with wave propagation into and out of floating ice sheets, and across
features contained therein such as cracks, open or refrozen leads and embedded
icebergs. It can also be applied to breakwaters, very large floating structures and
vessels in a seaway. After validation, results are presented showing (a) the details
of how the reflection coefficient depends on the geometry of the configuration being
modelled; and (b) how a wave energy spectrum evolves as it propagates in a marginal
ice zone composed of a large number of identical (coherent) or randomly specified
(incoherent) sea-ice plates, as commonly observed in the polar or subpolar oceans.

1. Introduction
Ocean waves propagating across the Arctic sea-ice canopy will encounter many

irregularities during their passage. First, as they enter the ice cover – typically from
the North Atlantic Ocean, they will experience an impedance change as they depart
the open water. This was modelled initially by Fox & Squire (1990, 1994), building
on the incomplete work of Evans & Davies (1968). It results in altered dispersion,
as the waves are now influenced by the flexural properties of the sea-ice under
which they travel, as well as by gravity; accordingly, the prefix ‘flexural–gravity’ is
commonly applied to describe such waves. Once inside the ice cover, the waves’ course
is affected by leads – either open or refrozen, pressure ridges, ice thickness variations,
and physical and mechanical changes in the properties of the sea-ice. Each of these
features causes some reflection to occur in a manner that is known to favour the
passage of long period waves over short periods, so, as explained in Squire et al.
(1995), the integrated effect of coming upon many heterogeneities over large distances
is a gradual evolution of the wave spectrum towards longer period energy and the
removal of short period waves. Squire et al. report several examples of this and also
include a description of what was known at the time about wave propagation in the
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marginal ice zone (MIZ): typically a 10–100 km wide band of broken-up pack ice
floes and cakes that skirts the more continuous interior sea-ice and which is affected
significantly by open ocean processes. MIZs are present in both polar regions and
have an important impact on regional climate because their constituent sea-ice alters
the way the atmosphere couples to the ocean. Taken in the context of global warming,
this is of immediate topical significance, as temporal adjustments in pack ice serve
as a proxy of climate change (see, e.g. Rothrock, Yu & Maykut 1999; Wadhams &
Davis 2000; Comiso 2002).

Squire et al. includes a discussion of some theoretical modelling, but considerable
progress has been made post 1995 towards constructing physically more realistic ice
sheets that can incorporate the inhomogeneities described above. Since that time, a
series of papers have appeared to determine the scattering kernels associated with
various irregularities in an ice sheet, in the majority of cases using an Euler–Bernoulli
plate to represent the sea-ice. Numerical methods as well as mathematical ones such
as the Wiener–Hopf technique and residue calculus have been used. Solutions include
wave entry at the ice sheet margin or across an abrupt change of thickness (Evans &
Davies 1968; Gol’dshtein & Marchenko 1989; Barrett & Squire 1996; Balmforth &
Craster 1999; Chakrabarti 2000; Chung & Fox 2002a; Sahoo, Yip & Chwang 2001;
Tkacheva 2001; Chung & Fox 2002b; Linton & Chung 2004) and wave propagation
across single or multiple cracks (Marchenko 1997; Chou 1998; Squire & Dixon 2000,
2001a; Williams & Squire 2002; Evans & Porter 2003; Manam, Bhattacharjee &
Sahoo 2005); an open or refrozen lead (Williams & Squire 2004a; Chung & Linton
2005); a localized change of thickness resulting from, for example, a trapped iceberg
(Squire & Dixon 2001b; Williams & Squire 2004a); and a pressure ridge (Williams
& Squire 2004a; Porter & Porter 2004).

A similar problem is the scattering by a floating strip. Meylan (1993) and Meylan &
Squire (1994) used the solution of an integral equation derived from Green’s theorem
by using Gaussian quadrature. Hermans (2003) took a similar approach, but solved
the integral equation by using a Galerkin expansion. Tkacheva (2002, 2004) also
solved the problem by deriving a pair of coupled Wiener–Hopf equations directly in
Fourier transform space. As in the present paper, this produces an efficient solution
method as only the evanescent waves that have not decayed by the time they cross
the strip need be considered. In parallel, modelling work focused on the MIZ has also
become more sophisticated by embedding the flexible floating raft in a Boltzmann
equation formulation (see, e.g. Meylan & Squire 1996; Meylan, Squire & Fox 1997;
Meylan & Masson 2006; Peter, Meylan & Linton 2006).

The current paper extends these solutions further by introducing appreciably greater
generality: we allow the ice properties and, in particular, the ice thickness to be
specified entirely independently in each of three three regions extending from −∞
to 0, from 0 to l, and from l to ∞. By doing this, gravity wave propagation across
irregularities such as open or refrozen leads in polar sea-ice, between adjacent ice
floes in pack ice, from open sea into shore fast ice or vice versa, across an iceberg
embedded in a sea-ice sheet, and into an ice shelf, can each be studied because the
theoretical development is robust enough for any of the three sheet thicknesses to
be set to any value, including zero. In addition, Appendix A provides a proof that
the velocity potential may always be represented by an eigenfunction expansion – a
result that will be of interest to floating body researchers generally.

While the foremost application of the work reported in this paper is to polar marine
geophysics, its generality also allows the model to be useful in marine engineering.
Specifically, it is of value to the study of the behaviour of floating breakwaters, very
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Figure 1. Three uniform Euler–Bernoulli thin elastic plates, floating on the fluid foundation
−∞ < x, y < ∞, 0 < z < H (the coordinate axes are shown displaced to the right to avoid
clutter). Submergence has been neglected, so the underside of each plate lies in the z = 0 plane.
A plane flexural–gravity wave arrives from the left (−∞ < x < 0) at an angle θ to normal
incidence, travels through the central strip (0 < x < l), and then propagates into the zone on
the right (l < x < ∞). The thickness of any of the plates may be set to zero to produce a
region of open water.

large floating structures (VLFSs) and, recognizing that the model is not fully three-
dimensional, the description of the response of floating vessels in a seaway. Because
of this, the theoretical narrative will be framed hereinafter so as to avoid focusing
prematurely on any of the specific problems mentioned, but the examples given in
§ 5 to demonstrate the versatility of the approach will be redirected towards polar
marine geophysics.

2. Equations and boundary conditions
Figure 1 illustrates the situation that we are modelling: three floating uniform

flexible sheets of thickness h0, h1 and h2, as shown, either welded together or free
to move independently. Each sheet is modelled as a separate Euler–Bernoulli thin
elastic plate. A plane flexural–gravity wave with unit amplitude and radial frequency
ω arrives at the central plate from the left-hand region and is partially reflected
and partially transmitted through the central strip of width l into the right-hand
region. Throughout the paper, the subscripts of j = 0, 1 and 2 will be used to denote
quantities associated with the left-hand, central and right-hand regions, respectively.

The amplitudes of the reflected and transmitted waves, denoted by R and T ,
respectively, will be called the reflection and transmission coefficients. It is the
determination of these quantities that is the main purpose of our solution.

Assuming that the sea water beneath the three plates is inviscid and of constant
density and that the fluid flow is irrotational, then there exists a potential function
Φ(x, y, z, t) such that the velocity of a fluid particle is given by ∇Φ . Because the
incident wave forcing is periodic in time t , and since the geometry of the problem is
shift-invariant in the y-direction, we may conclude that Φ has the following form:

Φ(x, y, z, t) = Re[φ(x, z) exp (i(αyy − ωt))]. (2.1)

This reduces the dimension of the problem from four to two. The wavenumber αy is
related to the incoming wave’s angle of incidence θ .
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For each plate, let us now define the flexural rigidity, Dj , the mass per unit area,
mj , and the characteristic length and time, Lj and τj , respectively, as follows:

Dj =
Ejh

3
j

12(1 − νj )2
, mj = ρjhj , Lj = 4

√
Dj

ρg
, τj =

√
Lj

g
.

Ej , νj and ρj are, respectively, the Young’s modulus, Poisson’s ratio and density of
the plate in the j th region, while ρ is the water density and g is the acceleration due
to gravity.

We now denote by the index m the region with the largest flexural rigidity, and define
the natural length L = (Dm/ρω2)1/5 that we will use to non-dimensionalize lengths. If
we also scale time t by a factor of τm, then we have the following quantities:

(x̄, ȳ, z̄) = (x, y, z)/L, t̄ = t/τm, φ̄(x̄, z̄) =
τm

L2
φ(x, z), ᾱy = αyL.

The other two significant lengths, l and H , are also scaled by L, so that l̄ = l/L and
H̄ = H/L. Further quantities that we will refer to are

D̄j = Dj/Dm, m̄j = mj/mm, λ =
g

Lω2
− iε, µ =

mm

ρL
,

where ε is an infinitesimal quantity introduced to force the reflected and transmitted
waves to decay exponentially as they travel away from the central strip. The limit as
it becomes zero will be taken once the solution has been completed; this procedure
is justified in Appendix A.

Dropping the overbars to avoid clutter, φ(x, z) must satisfy the following system of
equations (

∇2 − α2
y

)
φ(x, z) = 0, (2.2a)

L(x, ∂x)φz(x, 0) + φ(x, 0) = 0, (2.2b)

φx(x
+, z) − φx(x

−, z) = φ(x+, z) − φ(x−, z) = 0, (2.2c)

φz(x, H ) = 0, (2.2d)

where

L(x, ∂x) = D(x)
(
∂2

x − α2
y

)2
+ λ − m(x)µ.

The function D(x) is defined piecewise as

D(x) =

⎧⎨
⎩

D0 for x < 0,

D1 for 0 < x < l,

D2 for x > l,

and m(x) is defined analogously in terms of the mj .
As well as applying the above equations and the inherent radiation conditions

(which will be defined formally in § 3.2), the full solution must also satisfy some
conditions at the two edges xe =0 and xe = l. If two adjacent plates are joined or
frozen together at a given edge, then the following fixed-edge conditions must hold:

φz(x
+
e , 0) = φz(x

−
e , 0), (2.3a)

φzx(x
+
e , 0) = φzx(x

−
e , 0), (2.3b)

D(x+
e )L−(∂x)φz(x

+
e , 0) = D(x−

e )L−(∂x)φz(x
−
e , 0), (2.3c)

D(x+
e )L+(∂x)φzx(x

+
e , 0) = D(x−

e )L+(∂x)φzx(x
−
e , 0), (2.3d)
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where

L±(∂x) =
(
∂2

x − α2
y

)
∓ (1 − ν)α2

y.

If, on the other hand, the two plates are free to move independently, then we must
apply the free-edge conditions

D(x±
e )L−(∂x)φz(x

±
e , 0) = 0, (2.4a)

D(x±
e )L+(∂x)φzx(x

±
e , 0) = 0. (2.4b)

Both of these sets of conditions imply that energy is conserved at each edge, i.e. no
translational or rotational work is done by any of the edges. Note that even if the
free-edge conditions (2.4) are applied, (2.3c) and (2.3d) are still satisfied.

3. Solution using the Wiener–Hopf technique
The first step is to use Green’s theorem to derive a pair of coupled integral equations

of Wiener–Hopf type (Noble 1958; Roos 1969). These depend on φz(x, 0) over the
two semi-infinite intervals x ∈ (−∞, 0) and x ∈ (l, ∞).

Having derived the two integral equations, we then take their Fourier transforms
and solve each one individually, assuming that the solution to the other is known.
This produces two infinitely long unknown vectors. The first of these contains the
coefficients of the individual wave modes that travel across the central region from left
to right, and the second contains the coefficients of the modes that travel from right
to left. The first vector depends on the coefficients of the wave modes that still have
signifiant amplitudes after travelling from x = l to x =0, while the second depends on
the coefficients of those modes that are still significantly large after travelling from 0
to l.

Since most of the wave modes are evanescent, i.e. they decay exponentially with
distance, the two vectors are largely independent and only a small system of linear
equations remains to be solved to decouple the effects of the waves that cannot be
neglected after travelling across the central section.

After obtaining the general solution to the problem, we must then apply the appro-
priate edge conditions – either (2.3) or (2.4). Because the same process must be followed
for the residue calculus technique, the description of this procedure is left to § 4.3.

3.1. Green’s function

We use a Green’s function that satisfies the following set of equations:(
∂2

ξ + ∂2
ζ − α2

y

)
G(x − ξ, z, ζ ) = δ(x − ξ, z − ζ ), (3.1a)

L1(∂ξ )Gζ (x − ξ, z, 0) + G(x − ξ, z, 0) = 0, (3.1b)

Gζ (x − ξ, z, H ) = 0, (3.1c)

where Lj (∂x) =Dj

(
∂2

x − α2
y

)2
+ λ − mjµ.

This Green’s function depends on the dispersion function for the central strip f1(γ ),
where fj (γ ) = coth(γH )/γ −Λj (γ ), Λj (γ ) = Lj (iα) = Djγ

4+λ−mjµ (j = 0, 1, 2) and
γ (α) = (α2 + α2

y)
1/2. Evans & Porter (2003) present G as an inverse Fourier transform

with respect to x − ξ :

G(x − ξ, z, ζ ) =
1

2π

∫ ∞

−∞
χ(z−, α)

ϕ(z+, α)

f1(γ )
eiα(ξ−x) dα

= i
∑
α∈S1

Â1(α)eiα|x−ξ |ϕ(z, α)ϕ(ζ, α), (3.2)
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where z− = min{z, ζ}, z+ = max{z, ζ}, and

χ(z, α) =
Λ1(γ )γ cosh(γ z) − sinh(γ z)

γ 2 tanh(γH )
, ϕ(z, α) =

cosh γ (z − H )

cosh(γH )
.

For j = 0, 1, 2, Sj = {α | fj (γ ) = 0 and Im(α) > 0} and Âj (α) = Aj (α)Λ2
j (α), where

Aj (α) = (dfj (γ )/dα)−1 = −(γ 2/α)
/(

H
(
Λ2

j (γ )γ 2 − 1
)

+ 5Djγ
4 + λ − mjµ

)
.

In the limit as ε becomes zero in the definition of λ, the roots γ of each dispersion
relation fj (γ ) = 0 are usually distributed throughout the complex plane as shown by
Fox & Squire (1990). There is one positive real root that we label γj , a complex
conjugate pair in the right half-plane, an infinity of pure imaginary roots in the upper
half-plane, and the negatives of the previously mentioned roots. The effect of ε on
the location of the roots is to produce an infinitesimal counter-clockwise rotation. In
particular, each γj is moved slightly off the real line into the upper half-plane.

The elements of each set Sj are given by α =
√

γ 2 − α2
y , taking the square root

from the upper half-plane. If ε =0 and αy < γj , Sj also contains a real root, αj , that
moves into the upper half-plane as ε is increased slightly. This forces the sum in (3.2)
to decay exponentially as |x − ξ | → ∞. The other members of Sj are two complex
roots with the same imaginary parts and an infinity of pure imaginary roots.

If αy < γ0, then αy = γ0 sin θ , where θ is the angle of incidence. If αy � γ0, then no
propagating waves can exist in the left hand region – in that case, waves may travel
parallel to the central strip but decay exponentially with distance in the perpendicular
direction (Evans & Porter 2003).

Before moving on to the next section, we point out here that in the results section
we present results only for infinite depth, and consequently could have used the
infinite depth Green’s function. However, doing this introduces branch cuts into
the dispersion relation along the lines ±i[αy, ∞), and the discrete set of zeros of the
finite-depth relation were thought to be more convenient to deal with, as well as
giving a more general theory. In practice, the infinite-depth results can be obtained
by simply choosing a large enough value of H .

3.2. Derivation of the Wiener–Hopf integral equations

The radiation conditions alluded to above require that in the limit as ε → 0, the
potential corresponds to an incident wave arriving from the left and being either
reflected or transmitted, i.e.

φ(x, z) ∼
{

(eiα0x + Re−iα0x)ϕ0(z) as x → −∞,

T eiα2xϕ2(z) as x → ∞,
(3.3)

where ϕj (z) = ϕ(z, αj ) for j = 0, 1, 2.
For ε > 0, |φ| will become infinite as x → −∞ due to the exp(iα0x) term in

the incident wave potential φ0(x, z) = exp(iα0x)ϕ0(z); we will instead solve for the
function ψ(x, z) =φ(x, z) − φ0(x, z), which decays exponentially as |x| → ∞.

We begin the solution by using Green’s theorem to derive a pair of coupled integral
equations of the Wiener–Hopf type. Using equations (2.2) and (3.1), ψ can be written

ψ(x, z) =

∫∫
Ω

(
∇2

ξζGψ − G∇2
ξζψ

)
dξ dζ =

∮
∂Ω

(∂nGψ − G∂nψ) ds, (3.4a)

= −
∫ ∞

−∞
(Gζ (x − ξ, z, 0)ψ(ξ, 0) − G(x − ξ, z, 0)ψz(ξ, 0)) dξ, (3.4b)
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where Ω is the fluid region, { (ξ, ζ ) | −∞ < ξ < ∞ and 0 < ζ < H}, ∂Ω is the
positively oriented boundary of Ω , s is the arclength as we travel round ∂Ω , and ∂n

is the derivative with respect to the outward normal to ∂Ω . Equation (3.4b) follows
from (3.4a) because the exponential decay of G and ψ as |ξ | → ∞, along with the
sea floor conditions (2.2d) and (3.1c), force the other line integrals to vanish. If we
eliminate G and ψ from (3.4b) using (2.2b) and (3.1b), integrate by parts and simplify
the resulting expression, we can write ψ entirely in terms of ψz(x, 0) for x < 0 and
φz(x, 0) for x > l, as follows:

ψ(x, 0) = PT
0 Ledge(∂x)Gζ (x, z, 0) + PT

l Ledge(∂x)Gζ (x − l, z, 0)

+

∫ ∞

0

(L1 − L0)Gζ (x − ξ, z, 0) φ0,z(ξ, 0) dξ

+

∫ 0

−∞
(L0 − L1)Gζ (x − ξ, z, 0) ψz(ξ, 0) dξ

+

∫ ∞

l

(L2 − L1)Gζ (x − ξ, z, 0) φz(ξ, 0) dξ, (3.5)

where Pxe
= P+

xe
− P−

xe
, and

Ledge(∂x) = −

⎛
⎜⎝

L+(∂x) ∂x

L−(∂x)
∂x

1

⎞
⎟⎠ , P±

xe
= D(x±

e )

⎛
⎜⎝

1
∂x

L−(∂x)
L+(∂x)∂x

⎞
⎟⎠ φz(x

±
e , 0).

We now differentiate equation (3.5) with respect to z and let z → 0 to give
an integral equation in ψz(x, 0). We will solve it by splitting it into two different
equations, corresponding to regions 0 and 2; these are

ψ−(x) =
∑
α∈S1

β+(α)e−iαx +

∫ 0

−∞
(L0 − L1)g(x − ξ )ψ−(ξ ) dξ, (3.6a)

φ+(x) =
∑
α∈S1

β−(α)eiα(x−l) +

∫ ∞

l

(L2 − L1)g(x − ξ )φ+(ξ ) dξ, (3.6b)

where ψ−(x) = ψz(x, 0) when x < 0, φ+(x) = φz(x, 0) when x > l, and

g(x − ξ ) = Gzζ (x − ξ, 0, 0) =
1

2π

∫ ∞

−∞

1

f1(γ )
e−iα(x−ξ ) dα = i

∑
α∈S1

A1(α)eiα|x−ξ |. (3.7)

If p(α) = Ledge(−iα) and F0(α) = pT (α)P0 + if0(γ )ϕ′
0(0)/(α + α0), then the β±

coefficients are

β+(α) = iA1(α)F0(α) + c(α)eiαl, (3.8a)

β−(α) = iA1(α) pT (−α)P l + b(α)eiαl. (3.8b)

The b and c coefficients in (3.8) correspond to the eigenfunction expansion of
φz(x, 0) in the central region

φz(x, 0) =
∑
α∈S1

(
b(α)eiαx + c(α)eiα(l−x)

)
for 0 < x < l. (3.9)

They are given by

b(α) = iA1(α)(F0(−α) − f0(γ )Ψ −(−α)), (3.10a)
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c(α) = iA1(α)( pT (α)P l − f2(γ )Φ+(α)), (3.10b)

where Ψ − and Φ+ are defined as

Ψ −(α) =

∫ 0

−∞
ψ−(x)eiαx dx, Φ+(α) =

∫ ∞

0

φ+(x + l)eiαx dx. (3.11)

Assuming that the values of β± are known, we can solve (3.6a) and (3.6b) analytically
and independently; having done this, we solve an infinite but rapidly convergent
system of linear equations to find the values that the β± actually take.

3.3. Solution of the integral equations

To solve the two integral equations, they are first transformed into Fourier space
where the Wiener–Hopf technique is employed. We begin in § 3.3.1 by treating the
problem of three uniform plates of potentially different thicknesses. The method used
in that problem can be generalized simply to allow either or both of the left- and
right-hand plates to be open water. Section 3.3.2 describes how this is done. More
significant adjustments to the method of solution are required when the central region
contains open water and these are described in § 3.3.3.

3.3.1. Solution for three plates

To solve the integral equation (3.6a) using the Wiener–Hopf technique, we must
first extend its range to the entire real line. This is done by defining a second function
ψ+(x) that cancels the value that the integral takes for positive x. For negative values
of x, it is defined to be identically zero and ψ− is defined to be zero for positive x.
We can now write (3.6a) as

ψ−(x) = ψ+(x) + H (−x)
∑
α∈S1

β+(α)e−iαx +

∫ ∞

−∞
(L0 − L1)g(x − ξ )ψ−(ξ ) dξ, (3.12)

where H (x) is the Heaviside step function. Analogously, (3.6b) is written

φ+(x) = φ−(x) + H (x)
∑
α∈S1

β−(α)eiαx +

∫ ∞

−∞
(L0 − L1)g(x − ξ )φ+(ξ ) dξ. (3.13)

Taking the Fourier transforms of (3.12) and (3.13) and rearranging the results yields
the following system of Wiener–Hopf equations:

f0(γ )

f1(γ )
Ψ −(α) = Ψ +(α) − i

∑
k∈S1

β+(k)

α − k
, (3.14a)

f2(γ )

f1(γ )
Φ+(α) = Φ−(α) + i

∑
k∈S1

β−(k)

α + k
, (3.14b)

where

Ψ +(α) =

∫ ∞

0

ψ+(x)eiαx dx, Φ−(α) =

∫ 0

−∞
φ−(x + l)eiαx dx.

Referring back to the definitions of Ψ − and Φ+, if we assume that ψz(x, 0) is
bounded over the real line or, equivalently, that the displacements of the plates are
bounded everywhere, then Ψ −(α) will be analytic in the lower complex half-plane,
�− = {α ∈ � | Im[α] � 0}, while Φ+(α) will be analytic in the upper half-plane,
�+ = {α ∈ � | Im[α] � 0}. Both transforms will also decay at least as fast as 1/|α| as
|α| → ∞ in their respective regions of analyticity. Similarly, these assumptions imply
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in addition that Ψ + is analytic in �+ and that Φ− is analytic in �−. (As in the above
transforms, a ± superscript on all subsequent functions will also indicate that the
function in question is analytic in �±.)

Continuing with the Wiener–Hopf solution, our first step is to factorize the quotients
fj/f1 into products of the form

fj (γ )/f1(γ ) = K+
j (α)K+

j (−α) = K+
j (α)K−

j (α).

This was done by Chung & Fox (2002b), who found the K+
j to be

K+
j (α) = σj

∏
k′∈Sj

(α + k′)

/ ∏
k∈S1

(α + k), (3.15)

where

σj =
∏
k∈S1

γ (k)

/ ∏
k′∈Sj

γ (k′) =

√
Dj

D1

.

We can now rearrange (3.14) to give

K−
0 (α)Ψ −(α)+i

∑
k∈S1

β+(k)

K+
0 (k)(α − k)

=
Ψ +(α)

K−
0 (α)

− i
∑
k∈S1

β+(k)

α −k

(
1

K+
0 (α)

− 1

K+
0 (k)

)
, (3.16a)

K+
2 (α)Φ+(α)− i

∑
k∈S1

β−(k)

K+
2 (k)(α − k)

=
Φ−(α)

K−
2 (α)

+i
∑
k∈S1

β−(k)

α+k

(
1

K−
2 (α)

− 1

K+
2 (k)

)
. (3.16b)

Equation (3.16a) is an equality that holds on the real line, with its left-hand side
being analytic in �− and its right-hand side analytic in �+. Consequently, the Riemann
principle implies that both sides are equal to a single entire function. Moreover, when
there is no open water present, both sides of (3.16a) tend to zero as |α| → ∞, since in

that case the K
±
0 (α) are O(1) as |α| → ∞. Therefore, Liouville’s theorem implies that

the entire function in question is identically zero and so the unknown transform Ψ −

is given by

Ψ −(α) = −i
∑
k∈S1

β+(k)/K+
0 (k)

K−
0 (α)(α − k)

= −i
∑
k∈S0

a(α)

α − k
. (3.17)

Similar reasoning applied to (3.16b) provides the result

Φ+(α) = i
∑
k∈S1

β−(k)/K+
2 (k)

K+
2 (α)(α − k)

= i
∑
k∈S0

d(α)

α + k
. (3.18)

The a and d coefficients in the above two equations are given by

a(α) = i Res[Ψ −(k), k = α] =
∑
k∈S1

Ma(α, k)β+(k), (3.19a)

d(α) = −i Res[Φ+(k), k = −α] =
∑
k∈S1

Md(α, k)β−(k), (3.19b)

where

Ma(α, k)
∣∣
α∈S0

=
A0(α)f1(γ )K+

0 (α)

K+
0 (k)(α − k)

, (3.20a)

Md(α, k)
∣∣
α∈S2

=
A2(α)f1(γ )K+

2 (α)

K+
2 (k)(α − k)

, (3.20b)

for k ∈ S1.
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The two transforms Ψ − and Φ+ can now be inverted to give us explicit expressions
for ψ−(x) and φ+(x), as follows:

ψ−(x) =
∑
α∈S0

a(α)e−iαx, φ+(x) =
∑
α∈S2

d(α)eiα(x−l), (3.21a,b)

and the limit as ε → 0 can be taken. Accordingly, the scattering coefficients R and T

are given by

R = a(α0)/ϕ
′
0(0), T = d(α2)e

−iα2l/ϕ′
2(0).

However, the solution is not yet complete, as R and T , and indeed all the a and
d coefficients, still depend on the unknown coefficients β± in (3.8), which themselves
depend on the b and c coefficients (3.10). Nonetheless, it is apparent that only a few
of the b and c are needed, as β+(α) � c(α) exp(iαl) and β−(α) � b(α) exp(iαl), and
most of the α ∈ S1 have large positive imaginary parts.

For α ∈ S1, we can calculate Ψ −(−α) from (3.17) and Φ+(α) from (3.18) and
substitute them into equations (3.10a) and (3.10b). This gives a system of linear
equations of the form

b(α) = fb(α) +
∑
k∈S1

Mb(α, k)β+(k), (3.22a)

c(α) = fc(α) +
∑
k∈S1

Mc(α, k)β−(k). (3.22b)

Again, the b coefficients depend only on a few of the c coefficients and vice versa. We
may now eliminate the c(α) from (3.22a), find the required number of b(α), and then
generate the a(α), c(α) and d(α).

All that remains is to find the unknown vectors P0 and P l by applying the
appropriate edge conditions. This will be described in § 4.3.

3.3.2. Solution for a VLFS or a breakwater

When either h0 or h2 is zero, then the corresponding set Sj will not contain the two
complex roots described in § 3.1. The main consequence of this is that the factor σj

in (3.15) formally evaluates to

σj =

√
λ

D1

,

although its convergence to this number is slow and the original definition in terms
of the products of the roots appears to work better.

Asymptotically, the absence of the complex roots means that |K+
j (α)| ∼ O(|α|−2)

as |α| → ∞. This implies that the right-hand side of the relevant equation in (3.16) is
potentially O(|α|) as |α| → ∞. However, the left-hand side will be at most O(|α|−3)
and so both sides must still be equal to zero.

Hence, (3.17)–(3.22) still hold and our solution is complete once we have applied
the appropriate edge conditions.

3.3.3. Solution for an open lead

When h1 = 0, g(x) has a logarithmic singularity at the origin and so the derivatives
of that function required in (3.6) are highly singular. In theory, all singularities should
be cancelled out, but the solution proceeds more smoothly when they are removed
explicitly.



Scattering across three floating sheets with applications 123

By integrating by parts, the system (3.6) can be rewritten as

ψ−(x) =
∑
α∈S1

c(α)eiα(l−x) −
∫ ∞

0

(L0 − λ)φ0,z(ξ, 0)g(x − ξ ) dξ

+

∫ 0

−∞
(L0 − λ)ψ−(ξ )g(x − ξ ) dξ, (3.23a)

φ+(x) =
∑
α∈S1

b(α)eiαx +

∫ ∞

l

(L2 − λ)φ+(ξ )g(x − ξ ) dξ, (3.23b)

where φc(x) can still be written as in (3.9), but the b and c coefficients are now given
by

b(α) = f1(γ0)ϕ
′
0(0)

A1(α)

α0 − α
− A1(α)

∑
k∈S0

a(k)f1(κ)

α + k
, (3.24a)

c(α) = −A1(α)
∑
k∈S2

d(k)f1(κ)

α + k
, (3.24b)

where κ = γ (k). Proceeding in much the same way as in § 3.3.1, we take the Fourier
transforms of (3.23a) and (3.23b) and rearrange to give

Ψ −(α) =
iϕ′

0(0)

α + α0

+
pT (α)P0

f0(γ )
− f1(γ )

f0(γ )

(
Ψ +(α) + i

∑
k∈S1

c(k)eikl

α − k

)
, (3.25a)

Φ+(α) =
pT (α)P l

f2(γ )
− f1(γ )

f2(γ )

(
Φ−(α) − i

∑
k∈S1

b(k)eikl

α + k

)
. (3.25b)

These transforms can be inverted to put the a and d coefficients in terms of b and c,
giving

a(α)|α∈S0
= iA1(α)( pT (α)P0 − f1(γ )β+(α)), (3.26a)

d(α)|α∈S2
= iA2(α)( pT (−α)P l − f1(γ )β−(α)), (3.26b)

where

β+(α) = Ψ +(α) + i
∑
k∈S1

c(k)eikl

α − k
, β−(α) = Φ−(−α) + i

∑
k∈S1

b(k)eikl

α − k
.

Were it not for the presence of the unknown transforms Ψ + and Φ− in the formulae
for the a and d coefficients (3.26), we could eliminate those sets of coefficients from
(3.24) and solve for b(α) and c(α) as we did in § § 3.3.1 and 3.3.2.

However, to find the b and c coefficients we must also find a way to write Ψ + and
Φ− in terms of them as well. This is done by using the Wiener–Hopf technique to
solve (3.25) in the same way that we solved (3.16) in § 3.3.1 although, as in § 3.3.2
when either h0 or h2 is zero, we must first adjust our formulae for the K+

j functions.

In this case, the σj factors formally evaluate to (Dj/λ)
1/2, but they are again best

evaluated as the original product of roots. Asymptotically, |K+
j (α)| ∼ O(|α|2) as

|α| → ∞.
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Proceeding with the solution, we are finally able to write the following expressions
for Ψ + and Φ−:

Ψ +(α) = K+
0 (α)

(
iϕ′

0(0)
K+

0 (α0)

α + α0

−
∑
k∈S0

A0(k) pT (−k)K+
0 (k)

α + k
P0

)

− i
∑
k∈S1

c(k)eikl

α − k

(
1 − K+

0 (α)

K+
0 (k)

)
, (3.27a)

Φ−(α) = K−
2 (α)

∞∑
k∈S2

A2(k) pT (k)K+
2 (k)

α − k
P l + i

∞∑
k∈S1

b(k)eikl

α + k

(
1 − K−

2 (α)

K+
2 (k)

)
. (3.27b)

The β±(α) can now be eliminated from (3.26), which allows us to remove the a and
d from (3.24) and, after applying the edge conditions using the method described in
§ 4.3, the solution follows as in § 3.3.1.

4. Residue calculus solution
Here we confirm the results of § § 3.3.1 and 3.3.2 using the residue calculus technique

(Linton & McIver 2001, § 5.2). We were not successful in reproducing the Wiener–
Hopf results of § 3.3.3 for the open lead problem analytically, although this is not to
say that residue calculus cannot be used for that situation, as Chung & Linton (2005)
showed. However, our Wiener–Hopf results for an open lead can still be checked
numerically using the method of Williams (2006, chap. 7), which is also presented in
Williams & Squire (2006). This is done in § 5.2.

The method of this section begins by applying (2.2c) at x = 0 and x = l. This leads to
an infinite system of linear equations that may be simplified by using residue calculus
to invert two matrices analytically. This simpler set of equations is exactly the same
as (3.22) and its solution requires far fewer (less than half) unknown coefficients to
be found than did the original system.

4.1. Derivation of mode-matching equations

We show in the Appendix that Green’s theorem implies φ(x, z) can be expanded as

φ(x, z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ0(x, z) +
∑

α∈S0
â(α)e−iαxϕ(z, α) for x < 0,∑

α∈S1

(
b̂(α)eiαx + ĉ(α)eiα(l−x)

)
ϕ(z, α) for 0 < x < l,

∑
α∈S2

d̂(α)eiα(x−l)ϕ(z, α) for x > l.

(4.1)

The coefficients in the above expansions are related to the a, b, c and d coefficients
of the previous section by

a(α) = â(α)ϕz(0, α), b(α) = b̂(α)ϕz(0, α), c(α) = ĉ(α)ϕz(0, α) d(α) = d̂(α)ϕz(0, α).

Observe that the two conditions contained in (2.2c) are equivalent to requiring that
the functions φ±(x, z) = iαφ(x, z) ± φx(x, z) are continuous everywhere in the fluid for
α 	= 0. Using the expansion (4.1) in φ± will provide automatic continuity for all x,
except at x =0 and x = l where continuity must be applied explicitly. At x =0, we
require that
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i(α ± α0)ϕ0(z) + i
∑
k∈S0

(α ∓ k)â(k)ϕ(z, k)

= i
∑
k∈S1

(
(α ± k)b̂(k) + (α ∓ k)ĉ(k)eikl

)
ϕ(z, k), (4.2)

while at x = l, we require that

i
∑
k∈S2

(α ∓ k)d̂(k)ϕ(z, k) = i
∑
k∈S1

((α ± k)b̂(k)eikl + (α ∓ k)ĉ(k))ϕ(z, k). (4.3)

Now, by adjusting the rules of Lawrie & Abrahams (1999), we have the following
integral rules: if α ∈ Si and k ∈ Sj , then if i 	= j∫ H

0

ϕ(z, α)ϕ(z, k) dz

ϕz(0, α)ϕz(0, k)
=

fj (γ )

k2 − α2
− Dj (γ

2(α) + γ 2(k)), (4.4)

whereas if i = j , then

−2αAj (α)

∫ H

0

ϕ(z, α)ϕ(z, k) dz

ϕz(0, α)ϕz(0, k)
= δα,k + 2αDjAj (α)(γ 2(α) + γ 2(k)). (4.5)

Note that (4.5) may be derived from (4.4) by taking the limit as fj → fi .
Consequently, multiplying (4.2) by ϕ(z, α) with α ∈ S1, integrating with respect to

z from 0 to H and simplifying, yields

b(α) = iA1(α)F0(−α) + A1(α)f0(γ )
∑
k∈S0

a(k)

α + k
, (4.6a)

c(α)eiαl + iA1(α)F0(α) = A1(α)f0(γ )
∑
k∈S0

a(k)

α − k
. (4.6b)

Recalling that Ψ −(α) = − i
∑∞

k∈S0
a(k)/(α −k), (4.6a) is equivalent to (3.10a). Equation

(3.19a) is derived in the next section by using residue calculus to solve (4.6b) for the
a(k) in terms of the c(α). In passing, we note also that the left-hand side of (4.6b) is
β+(α).

The analogous set of equations to (4.6) follows from (4.3) in a similar fashion, and
is

c(α) = iA1(α) pT (α)P l + A1(α)f2(γ )
∑
k∈S2

d(k)

α + k
, (4.7a)

b(α)eiαl + iA1(α) pT (−α)P l = A1(α)f2(γ )
∑
k∈S2

d(k)

α − k
, (4.7b)

where α ∈ S1 again. Also, since Φ+(α) = i
∑

α∈S2
d(k)/(α + k), (4.7a) and (3.10b) are

equivalent. And, like (4.6b), (4.7b) can be solved for the d(k) using residue calculus
to reproduce equations (3.19b). Here, the left-hand side of (4.6b) is β−(α). The details
of the inversion of (4.6b) are given in the following section; the inversion of (4.7b)
proceeds in exactly the same way and so is not presented.

4.2. Solution of the residue calculus equations

To solve (4.6b), we look for an infinite matrix Ma(α, k′) such that for α, k ∈ S0∑
k′∈S1

Ma(α, k′)
A1(k

′)(κ ′)

k − k′ = −δ(α, k), (4.8)
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where α, k ∈ S0 and κ ′ = γ (k′), and

δ(α, k) =

{
1 if α = k,

0 if α 	= k.
(4.9)

Equation (4.6b) would then imply that

a(α) =
∑
k′∈S1

Ma(α, k′)β+(k′), (4.10)

and (3.19a) would be verified.
An alternative way of formulating (4.11) is to look for a function f (α, k) that

vanishes as |α| → ∞, is meromorphic in α, with poles when α ∈ S1, and that satisfies

f (α, k) = −δ(α, k) for α, k ∈ S0. (4.11)

For each value of k ∈ S0, the function f (α, k) will then have a partial fractions
expansion of the same form as the left-hand side of (4.8). Equating the coefficients
gives us

Ma(k, k′)A1(k
′)f0(κ

′) = Res[f (α, k), α = k′ ∈ S1]. (4.12)

From our Wiener–Hopf working, as long as h1 	= 0, a suitable candidate for f (α, k) is

f (α, k) = −A0(k)f1(κ)K+
0 (k)

K−
0 (α)

α − k
= − f1(κ)K+

0 (k)

f1(γ )K+
0 (α)

A0(k)f0(γ )

α − k
. (4.13)

(Recall that if h1 = 0, then |K+
0 (α)| ∼ O(|α|2) as |α| → ∞, making f (α, k) ∼ O(|α|). As

a consequence, its partial fractions expansion would have to include a linear function
as well as a sum over its poles.) Hence, as in (3.20),

Ma(α, k) =
A0(α)f1(γ )K+

0 (α)

K+
0 (k)(α − k)

. (4.14)

Thus, in this section we have shown that the a(α) depend on the c(α) in exactly the
same way as they did in § 3.3 (cf. equation (3.19a)). By applying the same procedure
to (4.7b), we can also show that the d(α) depend on the b(α) in the manner prescribed
by (3.19b).

In addition, since we also showed that equations (4.6a) and (4.7a) were the same as
(3.10a) and (3.10b), using (3.19a) and (3.19b) to eliminate the a(α) and d(α) from the
system of equations will inevitably produce (3.22). Therefore, the b(α) and c(α) will
be the same as in § 3.3 and so will a(α), d(α), R and T .

4.3. Application of the edge conditions

The last step in the solution, which is common to both the Wiener–Hopf solution
and the residue calculus solution, is the application of the edge conditions. Since our
a, b, c and d coefficients still depend on the unknown vectors P0 and P l , we must
find them by applying either (2.3) or (2.4) as described below.

If we wish to apply the fixed-edge conditions, we substitute (2.3) into the definitions
of the unknown Pxe

vectors to give

Pxe
= (D(x+

e ) − D(x−
e ))

⎛
⎜⎝

φz(x
±
e )

φzx(x
±
e )

0
0

⎞
⎟⎠ .
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We may evaluate the ∂j
x φz(x

±
e ) using either (3.9) or one of (3.21a,b), or equivalently

using the expansion for the relevant region in (4.1); we may choose whether to take
the right-hand or left-hand limit according to whichever is most convenient.

For a free edge, we first apply (2.3c) and (2.3d), making
[

Pxe

]
3
=

[
Pxe

]
4
= 0, as

was the case when we applied the free-edge conditions. We then apply (2.4), again
substituting in either (3.9) or (3.21a,b), or equivalently (4.1). When there are plates on
both sides of the edge in question, we are able to choose whether to take the right-hand
or left-hand limits. This is because we have already applied (2.3c) and (2.3d).

However, if the edge separates a plate from another region of open water, then
we must take the limit from within the plate. This might seem surprising, as in this
case applying (2.3c) and (2.3d) is exactly the same as applying (2.4). (D(x) = 0 in a
region of open water.) However, the Green’s function that we used did not satisfy the
adjoint edge conditions, so applying the edge conditions a second time is equivalent
to applying the adjoint conditions.

5. Results
We begin this section by validating the theory developed above. This is done in

two ways: first, by demonstrating that predictions are well-behaved and sensible,
particularly in limiting cases; and secondly, by comparing results that arise in simpler
situations with the more restrictive, alternative models that have been published
previously (see § 1), especially for waves propagating beneath continuous ice sheets. In
addition, a conservation of energy relationship between the reflection and transmission
coefficients (Fox & Squire 1990) was used to provide further confirmation of our
results.

Physical parameters used in this section are Ej = 5 × 109 Pa, νj =0.3,

ρj = 922.5 kg m−3 (for j = 0, 1, 2), ρ = 1025 kg m−3 and g =9.81m s−2. In order to
concentrate on the effect of other parameters, we will present only infinite-depth
results. Williams (2006) showed that these could be obtained by setting the non-
dimensional water depth to 5. If the free-edge conditions are applied at this water
depth, about eighty evanescent modes are required for convergence to graphical
precision at the lowest period used (2 s), whereas fewer than thirty are required
for the highest period (20 s). Only fifty modes are necessary when the frozen-edge
conditions are applied at the lowest period.

5.1. Validation

In figure 2, the reflection coefficient is plotted for refrozen leads of two different widths
and four different thicknesses, in each case welded to the surrounding 1 m thick sea-
ice. The full, i.e. accurate, solution is shown by a solid line, while an approximate
one that neglects the evanescent modes is shown by a dashed line. Notice that the
overall level of reflection increases from top to bottom, i.e. from figure 2(a) to 2(c) to
2(e) to 2(g) as σ decreases, etc., which is expected because the feature becomes more
prominent as its ice becomes thinner. Also notice that the fine structure in the curves
is least for the left-hand set and greatest for the right-hand set, which correspond
to lead widths of 15 m and 50 m, respectively. This is because interference effects are
more likely within the band of typically observable wave periods for wider leads,
where they can lead to perfect transmission, i.e. zeros in the reflection coefficient, at
certain periods. Moreover, since the wavelength in ice increases monotonically with
thickness, the number of zeros increases from top to bottom as σ decreases and the
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Figure 2. The reflection coefficient for normal incidence arising from a refrozen lead
containing ice that is welded to the surrounding sea-ice sheets, i.e. satisfies (2.3), which in
this case are of equal thickness h0 = h2 = 1 m. The lead width in the left-hand plots (a, c, e, g)
is l = 15 m while l = 50 m in the right-hand plots (b, d, f, h). Ice thickness in the lead itself
is h1 = 0.9 σh0, where σ = 1 (a, b), σ = 3/4 (c, d), σ = 1/2 (e, f ), σ =1/4 (g, h). In each case,
the solid line represents the accurate solution while the dashed line is an approximate one
found by neglecting the contribution from the evanescent waves. For the welded-edge situation
shown here, the agreement is quite good at all thicknesses and improves with the width of the
lead, where the dashed curve is obscured by the solid one.

ice in the lead becomes thinner. The solid curves presented reproduce precisely those
of Williams & Squire (2004b, figure 5a), which were obtained using a simpler model.

Figure 3 is equivalent to figure 2 for the free-edge conditions (2.4). In this case
σ varies from 1, 2/3, 1/3 and 0 from top to bottom and the widths are 15 m and
50 m as before. Fine structure is much more evident here, both for the narrow leads
and especially for the wider ones where many zeros in the reflection coefficient occur.
The open-water lead plots, figures 3(g) and 3(h), reproduce the behaviour shown
in figure 3 of Chung & Linton (2005), although there the curves are plotted as a
function of the radial frequency ω (nondimensionalized using the same scheme as
here), rather than wave period. Specific plots in figure 3 of the current paper are also
convincingly similar to those of Squire & Dixon (2001b), although the lead widths are
different.

In figure 4, we show how the reflection coefficient varies for a plate of thickness 1 m
in open water and surrounding thin ice (figure 4a, b); and plates of different thickness
embedded in 1 m thick sea-ice (figure 4c, d). This is done against the wave period on
the left-hand plots and against the width of the plate on the right-hand side. The



Scattering across three floating sheets with applications 129

5 10 15 20
0

0.5

1.0
(a) (b)

(c) (d)

(e) (f)

(g) (h)

5 10 15 20
0

0.5

1.0

5 10 15 20
0

0.5

1.0

5 10 15 20
0

0.5

1.0

5 10 15 20
0

0.5

1.0

5 10 15 20
0

0.5

1.0

5 10 15 200

0.5

1.0

5 10 15 200

0.5

1.0

|R|

|R|

|R|

|R|

Wave period (s) Wave period (s)

Figure 3. The reflection coefficient for normal incidence arising from an open-water lead or
a refrozen lead containing ice that is unattached to the surrounding sea-ice sheets, i.e. satisfies
(2.4), which in this case are of equal thickness h0 = h2 = 1 m. The lead width in the left-hand
plots (a, c, e, g) is l = 15 m while l = 50 m in the right-hand plots (b, d, f, h). Ice thickness in the
lead itself is h1 = 0.9 σh0, where σ = 1 (a, b), σ = 2/3 (c, d), σ = 1/3 (e, f ), σ = 0 (g, h). In each
case, the solid line represents the accurate solution while the dashed line is an approximate one
found by neglecting the contribution from the evanescent waves. For the free-edge situation
shown here, the best agreement occurs when the lead ice is thinnest or absent and the lead is
wide. (In these cases the solid curve obscures the dashed ones.)

open-water plot (solid line in figure 4a) is the same as plotted by Meylan (1993)
using an entirely different method based primarily on Green’s theorem. Figures 4(b)
and 4(c) are identical to those of figures 3 and 4 of Squire & Dixon (2001b), again
found using a Green’s function approach. The curves in figures 4(b) and 4(d ) illustrate,
for an 8 s wave, how zero reflection can occur at certain plate widths. Focusing on
figure 4(d ), for example, the wavelengths corresponding to 8 s for each plate thickness
are 1 m: 124 m (solid); 2 m: 165 m (dashed); 5m: 261 m (dot-dashed); and 10 m: 380 m.
Once the plate is wide enough for the evanescent contributions to be neglected, the
zeros are roughly commensurate with the half-wavelength, in agreement with earlier
work (Meylan 1993; Squire & Dixon 2001b).

5.2. Geophysical results

We begin this section by providing in figure 5(a, b) some results when the thickness
h0 	= h1 	= h2. The plots also demonstrate that the model described earlier converges
to the same solution as those found by an entirely different method using numerical
integration (see Williams 2006, chap. 7; Williams & Squire 2006). Results are
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Figure 4. The reflection coefficient arising from an ice plate that is unattached to the
surrounding identical sea-ice sheets, plotted against the period for a plate width of 100 m (a, c)
and against the width of the plate (b, d) for 8 s period waves. In (a) and (b), h0 = h2 = 0 (solid),
0.5m (dashed), 0.7 m (dot-dashed), 0.9 m (dotted) and h1 = 1 m; in (c) and (d ), h0 = h2 = 1m
and h1 = 1 m (solid), 2 m (dashed), 5 m (dot-dashed), 10 m (dotted). The curves in (c) are
identical to those in figure 4 of Squire & Dixon (2001a), found by an entirely different method.

reassuringly identical, including when h1 = 0 in the solid curves of figure 5(b, d).
(Recall that we could not confirm the Wiener–Hopf results for an open lead
analytically.) The phases, which are not plotted, were also checked and found to be in
similar agreement. In terms of their trend and fine structure, the results are superficially
similar to those when the thicknesses on either side of the enclosed region are the
same, except that the zeros that arise because of interference become non-zero minima.

A further application of the model is provided in figures 6 and 7. Although we
have until now regarded the theory as being applicable to three adjoining continuous
ice sheets of thicknesses h0, h1 and h2, respectively (recalling that any of the three
thicknesses can also be zero), by patching many of these sets of three sheets together,
we can fashion a theoretical analogue of an entire polar ice cover that allows spatial
variability. Both open and refrozen leads of any width can be modelled, as can simple
changes of thickness. Although pressure ridges would generally be more complicated
in terms of their cross-sectional shape, the model affords an approximate method
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Figure 5. The reflection experienced by ice-coupled waves as they propagate from a sea-ice
sheet of thickness h0 across a free ice plate of width 15m and thickness h1 	= h0 into a second
semi-infinite sheet of thickness h2 	= h1 	= h0. In (a), h0 = 0 (solid, 
), 1.5 m (dashed, �),
3 m (dot-dashed, �), h1 = 2 m and h2 = 1 m; in (b) h0 = 1 m, h1 = 0 (solid, 
), 1.5 m (dashed,
�), 3 m (dot-dashed, �) and h2 = 2 m. The curves in each plot are computed by the method of
the current paper, while the points are computed using numerical integration coupled with a
single Wiener–Hopf equation (Williams 2006).

of dealing with these also, recognizing that at short periods, the draft of these
irregularities may be significant enough for the assumption of zero submergence to
become untenable.

Equally, the model can be regarded as applicable to the marginal ice zone (MIZ),
as a continuous sheet of ice interlaced by leads can likewise be interpreted as a
number of discrete ice floes separated by open water, recalling again that the solution
developed in § 3 allows for arbitrary floe thickness and width. To the far left of the
floes is a semi-infinite region of open ocean, while to their far left is a semi-infinite
region of shore-fast ice. This ice will have the same thickness as the mean ice thickness
of the floes in the MIZ. The results of doing this can then be compared directly with
those reported by Kohout & Meylan (2006), which are computed using an entirely
different method based on matching eigenfunctions at the edges of the constituent
ice floes that make up the MIZ. The computational approach that we take is to
calculate the scattering by the single floes and by the semi-infinite sheet on the right
exactly, but to take advantage of the smaller wavelength and rapid decay of the
evanescent waves in open water by using the wide-spacing approximation to combine
the results for the individual floes. We could also have made a further wide-spacing
aproximation to compute the scattering for the individual floes, but the wavelength
in the ice is much longer than in open water and we would have lost some accuracy
in our calculations for smaller floe widths. (For example, referring again to figure 3b,
there are still noticeable differences between the exact results and the approximate
wide-spacing ones when the central strip is 0.9 m thick and 50 m wide.)

Our first simulation of the MIZ is shown in figure 6. We have constructed an
MIZ made up of 10, 20, 50 and 100 floes with a fixed floe size of 50 m and a fixed
separation of 30 m; obviously, this is a very simple marginal ice zone, but it allows
us to show how the reflection coefficient (figure 6a–d ) changes with wave period. As
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Figure 6. The scattering by N identical floes in an MIZ. The graphs in the left-hand column
plot |R| against the period, while the right-hand graphs denote transmitted spectra for an
incident Pierson–Moskowitz spectrum (also shown as the closely spaced dotted curve that
envelopes the others). The floes have thickness h1, are 50 m wide and are spaced 30 m apart.
They are located between a semi-infinite region of open water and a semi-infinite region of ice
that also has thickness h1. Solid curves correspond to h1 = 0.5 m, dashed to 1 m, dot-dashed
to 1.5 m and dotted to 2 m. (a, e) correspond to N =10, (b, f ) to N =20, (c, g) to N = 50, and
(d, h) to N = 100.

well as the expected gradual decrease in reflection coefficient as period increases, the
curves in figure 6(a–d ) have considerable fine structure owing to the integrated effect
of the zeros discussed earlier in the context of reflection from a single feature. The
fine structure arises because of the coherent nature of the simulation, which has all
floes identical in terms of thickness, width and separation. Of greater geophysical
importance, figure 6 illustrates how a Pierson–Moskowitz power spectrum of incident
wave periods (Pierson & Moskowitz 1964) is altered by a simple configuration of ice
floes (figure 6e–h) because of this complexity. Note that although such a spectrum is
usually presented as a function of frequency, we have defined it in terms of period
for ease of comparison with our reflection results. At certain periods (. . . , ∼ 3.9 s,
5.5 s, 7.1 s, 10.3 s, . . . , for example), the ice field can block the passage of waves
completely because its uniformity produces perfectly coherent interactions between
the incoming and multiply reflected waves at each period. Although it is also common
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Figure 7. The scattering by N ice floes of random thickness, random width and random
separation in an MIZ. (Results apply to a single realization of the statistical distributions
for these properties.) The graphs in the left-hand column show |R| against period, while the
right-hand graphs show the transmitted spectra arising from an incident Pierson–Moskowitz
spectrum (shown again as the enveloping, closely-spaced dotted curve). The floes have a mean
thickness centred on h1 = 0.5 m (solid), 1 m (dashed), 1.5 m (dot-dashed) and 2 m (dotted).
They are located between a semi-infinite region of open water and another semi-infinite region
of ice that also has thickness h1. As in figure 6, N = 10 in (7a, e), N = 20 (b, f ), N = 50 (c, g)
and N = 100 (d, h).

for such regular arrangements to produce periods of complete transmission, this is
not observed here because of the difference in ice thicknesses to the far left and right
of the MIZ. Recall that this was apparent in figure 5 when h0 and h2 were different.

It is clear that the ice thickness has a very significant effect on the evolution of
the wave spectrum as it travels through the pack ice: note the substantial difference
between the solid, dashed, dot-dashed and dotted curves in figure 6(e–h), for example.
In contrast, while there is certainly some modification of the spectra between the
equivalent plots of figure 6(e–h) (e.g. compare the shape of the solid curve in figure 6e
with that in 6h), it is far less than that caused by changes in thickness.

Overall, the predicted attenuation due to scattering in the MIZ is substantial, but
this statement has to be taken in the context of the Pierson–Moskowitz spectrum
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used, which is biased towards short to medium period waves. The manner in which
wave energy decays as it proceeds through pack ice is dependent on its period, so if
longer waves were present they would be far less affected by the ice floes encountered.
On the other hand, the intensity of wind seas will quickly be reduced to insignificancy.

Figure 7 is similar to figure 6, but in this case the ice floe separations, widths
and thicknesses are chosen randomly. The results show the scattering for a single
realization of common statistical distributions for these properties. Floe separations
are selected from a uniform distribution defined between 10 m and 50 m, and
floe widths are sampled from an exponential distribution A exp(−(x − xmin)/λ) with
xmin = 10 m and λ= 40 m, so the mean width is 50 m and 99% of the floes are less than
194 m across. The thicknesses are chosen from a beta distribution Axp−1(1−x)q−1 with
p = q = 4, x ∈ [0, 1], mapped so that it has the mean stated in the figure, i.e. 0.5 m,
1m, 1.5 m and 2.0 m and 20% maximum variation about that mean. The respective
number of floes N in each case is the same as in figure 6. The plots display the
same overall behaviour, e.g. the same dependence on thickness is evident, but the fine
structure that arose from coherency in figure 6 has been replaced by incoherent fine
structure that encapsulates the random distribution of floe thicknesses, diameters and
spacings chosen – at least for the relatively small number of ice floes considered. In
particular, the maxima and minima observed in the corresponding plots in figure 6
have decreased and increased, respectively. Williams & Squire (2004a) showed for a
field of pressure ridges that this fine structure is smoothed out if results for different
realizations of the various distributions of properties are averaged. They also showed
that this average is approximated well by a ‘serial approximation’ and we would
expect to see this here too if we introduced some averaging. The serial approximation
turns out to be equivalent to the predictions of localization theory (Anderson 1958).

The fine structure is greatest in figure 7(h), i.e. for the largest number of floes
(N = 100). While the smoothing effect of including very large numbers of floes from
a prescribed distribution will diminish variability in relation to the incident Pierson–
Moskowitz spectrum at any one period, the onset of this effect in terms of N will
depend on the period under consideration and the characteristics of the floes present.
It is evident that the reflection coefficients for individual ice floes combine to create
a very complicated pattern for the marginal ice zone as a whole and that this causes
the rather intricate metamorphosis of the incoming Pierson–Moskowitz spectrum on
the far side of the modelled MIZ.

In figure 8, spectra arising from a Pierson–Moskowitz spectrum are plotted for
MIZs randomized in the same way as figure 7, but for a single mean thickness
of 1 m and values of N =500, . . . , 5000 in steps of 500. Only periods between 8 s
and 14 s are plotted because scattering has reduced the energy density to negligible
proportions at lower periods and at longer periods the Pierson–Moskowitz spectrum
has insignificant magnitude in any case. The substantial progressive selective filtering
effect of the ice floes on the passage of the spectrum through the ice field is clear;
as more and more floes are included, i.e. as we move from figures 8(a) to 8(j ), the
spectrum gradually progresses to the right towards longer periods. For 500 floes
(figure 8a) the spectrum still has much absolute fine structure, with a substantial peak
evident at a little above 9 s, but this is gradually reduced as more and more ice floes
are incorporated into the simulation. Even for very large numbers of floes (figure 8j ),
notice that minimal divergence is evident above 12 s between the spectral shapes
of the incident Pierson–Moskowitz spectrum (dotted) and the attenuated spectrum.
This illustrates again the considerable dependence of the process on period and, in
particular, that scattering impedes the passage of short periods while allowing long
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Figure 8. The scattering by N ice floes of random thickness, random width and random
separation in an MIZ, located between a semi-infinite region of open water and a semi-infinite
region of ice that has thickness 1 m. (Results apply to a single realization of the statistical
distributions for these properties.) The graphs show the transmitted spectra arising from an
incident Pierson–Moskowitz spectrum (shown dotted) for an MIZ composed of (a) N = 500,
(b) 1000, (c) 1500, (d ) 2000, (e) 2500, (f ) 3000, (g) 3500, (h) 4000, (i ) 4500 and (j ) 5000
ice floes. The floes are drawn from a beta distribution with a 20% variation about a mean
thickness of 1 m.

waves to pass unhindered, i.e. the system acts to low-pass filter the incoming wave
energy in the manner observed in field observations (see, e.g. Squire & Moore 1980;
Wadhams et al. 1986, 1987).

6. Conclusions
The theoretical development reported in this paper relates to wave propagation

across three floating elastic thin plates – each with properties that can be defined
independently, which are either welded together or have free edges. It also allows any
of the plates to have zero thickness, i.e. to be absent, so that in those regions, the waves
propagate on the free surface of open water. While this problem is straightforward
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to define and is physically very relevant, it is mathematically difficult to solve. It
has applicability to geophysics, in particular to wave propagation in ice-infested seas,
and to marine engineering where the response of VLFSs, floating breakwaters or
compliant vessels in a seaway can be described.

The solution proceeds using the Wiener–Hopf method and residue calculus. It is
validated in less complicated (less general) cases using published work that invokes
different and independent methods of solution, so we have confidence that the
analysis is accurate. A wide-spacing approximation that neglects the evanescent waves
generated at each interface is included.

The theoretical model can be used to reproduce the way in which waves interact with
various irregularities in continuous sea-ice, e.g. leads, icebergs, changes of material
property and pressure ridges. It can also be extended to study wave propagation across
large expanses of the Arctic sea-ice canopy, although this is not specifically discussed
herein. Instead, the geophysical applications chosen to illustrate the work are wave
propagation in (a) a deterministically-prescribed MIZ, where coherency-generated
interference effects predominate; and (b) an ice field comprising floes selected from
probability density functions that characterize the floe thickness, width and spacing,
where incoherency occurs. Predictions are at least qualitatively consistent with field
observations, noting that the physical morphology of the pack ice in the field data
is not reported sufficiently precisely and in enough detail by Squire & Moore (1980)
and Wadhams et al. (1986, 1987), for example, to allow a direct comparison of theory
and data to be carried out. If this is to be conducted in the future, a more thorough
survey of ice thickness alongside aerial photography (or active-radar-based remote
sensing) to obtain floes size and spacing distributions, would be required.

This work was supported by a Marsden grant from the Royal Society of New
Zealand and the University of Otago who provided a bridging grant to T.D.W.

Appendix. Proof that the potential in a region of constant properties may
always be represented by an eigenfunction expansion

In this Appendix, we seek to justify the assumption that the potential φ may be
represented by the expansion (4.1), without reference to the Wiener–Hopf solution in
(3). In fact, the proof is valid for any number of adjacent regions and so will apply
to a problem such as the one solved by Kohout & Meylan (2006). Similar proofs are
also presented by Williams (2006) and Manam et al. (2005).

To achieve this we first use Green’s theorem to show that such an expansion always
exists in a bounded region of constant properties (water depth, ice rigidity and mass
per unit surface area; the ice may also have no free edges), and then let the region
become unbounded to show that an expansion always exists in a semi-infinite region.

One point to note is that in the following, no assumptions are made about ε

being zero or otherwise; since the Green’s functions we will use and the roots of the
dispersion relation for each region will be continuous in ε, the expressions for φ in
each region will also be continuous. Consequently, a corollary of this Appendix is
that in § 3 we are justified in first obtaining φ(x, z) when ε > 0 and then taking the
limit as ε → 0.

A.1. Bounded regions

Let φ satisfy (2.2) in the region Ωℵ = { (ξ, ζ ) | x0 < ξ < x1 and 0 < ζ < H }, where
L(∂x) = Lℵ(∂x) =Dℵ(∂−

x α2
y)

2 + λ − mℵµ in (2.2c), and let Gℵ satisfy (3.1), but with
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(3.1b) replaced by

Lℵ(∂ξ )Gℵ,ζ (x − ξ, z, 0) + Gℵ(x − ξ, z, 0) = 0. (A 1)

From (3.2), Gℵ can be written as

Gℵ(x − ξ, z, 0) = i
∑
α∈Sℵ

Âℵ(α)eiα|x−ξ |ϕ(z, α)ϕ(ζ, α), (A 2)

where Sℵ and Âℵ(α) are the ℵth-region analogues of the Sj and Âj (α) defined in § 3.1
for the j th region. Similarly, in the working below, αℵ and ϕℵ(z) are the ℵth-region
analogues of αj and ϕj (z).

Applying Green’s theorem to φ directly (as opposed to applying it to ψ as we did
in equation 3.4a), let us write

φ(x, z) =

∮
∂Ωℵ

(∂nGℵφ − Gℵ∂nφ) ds

=

∫ H

0

(Gℵ,x(x − x0, z, ζ )φ(x0, ζ ) + Gℵ(x − x0, z, ζ )φx(x0, ζ )) dζ

−
∫ H

0

(Gℵ,x(x − x1, z, ζ )φ(x1, ζ ) + Gℵ(x − x1, z, ζ )φx(x1, ζ )) dζ

−
∫ x1

x0

(Gℵ,ζ (x − ξ, z, 0)φ(ξ, 0) − Gℵ(x − ξ, z, 0)φz(ξ, 0)) dξ. (A 3)

By eliminating φ and Gℵ from the final integral using (2.2b) and (A 1) (as we did in
§ 3.2) and integrating by parts, that integral simplifies to

(P+
x0

)T Ledge(∂x)Gℵ,ζ (x − ξ0, z, 0) − (P−
x1

)T Ledge(∂x)Gℵ,ζ (x − ξ1, z, 0),

so by substituting (A 2) into (A 3), we obtain the eigenfunction expansion

φ(x, z) =
∑
α∈Sℵ

(b̂ℵ(α) exp(iα(x − x0)) + ĉℵ(α) exp(iα(x1 − x)))ϕ(z, α), (A 4)

where

b̂ℵ(α) = iÂℵ(α)

(
pT (−α)P+

x0
ϕz(0, α) +

∫ H

0

(
iαφ(x0, ζ ) + φx(x0, ζ )

)
dζ

)
, (A 5a)

ĉℵ(α) = iÂℵ(α)

(
− pT (α)P−

x1
ϕz(0, α) +

∫ H

0

(
iαφ(x1, ζ ) − φx(x1, ζ )

)
dζ

)
. (A 5b)

Thus, we have proved that if φ satisfies (2.2) in a bounded region where L
has continuous constant coefficients then it can always be expanded in terms of
eigenfunctions; and in particular, if we set x0 = 0, x1 = l, b̂ = b̂ℵ and ĉ = ĉℵ in (A 4),
we have proved that we are able to write φ in the form it takes for 0 < x < l in (4.1).

A.2. Semi-infinite regions

We can generate an eigenfunction expansion for φ if the region Ωℵ is unbounded by
letting either x0 → −∞ or x1 → ∞ in (A 3) and substituting the known asymptotic
behaviour of Gℵ and the radiation conditions (3.3) for φ into the integral.

We will deal with the case as ξ = x0 → −∞ first. If we do that then

Gℵ(x − ξ, z, ζ ) ∼ iÂℵ(αℵ) exp(iαℵ|x − ξ |)ϕℵ(z)ϕℵ(ζ ), (A 6a)

φ(x, z) ∼ (I exp(iαℵξ ) + R exp(−iαℵξ ))ϕℵ(z), (A 6b)
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and substituting (A 6a) into (A 3) implies that φ is now

φ(x, z) = lim
x0→∞

bℵ(αℵ) exp(iαℵ(x − x0))ϕℵ(z) +
∑
α∈Sℵ

ĉℵ(α) exp(iα(x1 − x))ϕ(z, α). (A 7)

Substituting (A 6b) into the definition of bℵ(αℵ) we may write it as

bℵ(αℵ) = −2αℵÂℵ(αℵ)I exp(iαℵx0)

(
2Dℵγ 2(αℵ)

(
ϕ′

ℵ(0)
)2

+

∫ H

0

ϕ2
ℵ(ζ ) dζ

)
, (A 8)

which evaluates to I exp(iαℵx0) when we use the integral rule (4.5). Thus, φ is simply

φ(x, z) = I exp(iαℵ(x − x0))ϕℵ(z) +
∑
α∈Sℵ

ĉℵ(α) exp(iα(x1 − x))ϕ(z, α). (A 9)

Setting I = 1, x1 = 0, and â(α) = ĉℵ(α) allows us to write φ in its x < 0 form in (4.1).
Similarly, if we let x1 → ∞ in (A 4) and this time substitute (A 6) into the terms

that are evaluated at ξ = x1 (but replacing I with T and R with 0 in equation (A 6b)),
we find that φ can be written

φ(x, z) =
∑
α∈Sℵ

b̂ℵ(α) exp(iα(x − x0))ϕ(z, α). (A 10)

Setting x0 = l and d̂(α) = b̂ℵ(α) means we have derived the x > l form for φ in (4.1).
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